Volatility Based Change Detection in Data Streams
نویسندگان
چکیده
This work develops techniques for the sequential detection and location estimation of transient changes in the volatility (standard deviation) of time series data. In particular, we introduce a class of change detection algorithms based on the windowed volatility filter. The first method detects changes by employing a convex combination of two such filters with differing window sizes, such that the adaptively updated convex weight parameter is then used as an indicator for the detection of instantaneous power changes. Moreover, the proposed adaptive filtering based method is readily extended to the multivariate case by using recent advances in distributed adaptive filters, thereby using cooperation between the data channels for more effective detection of change points. Furthermore, this work also develops a novel change point location estimator based on the differenced output of the volatility filter. Finally, the performance of the proposed methods were evaluated on both synthetic and real world data.
منابع مشابه
Characterizing Drifts for Proactive Drift Detection in Data Streams
The evolution of data such as changes in the underlying model known as concept drift present many challenges for data stream research. Currently most drift detection methods are able to locate the point of change, but are unable to provide meaningful information on the characteristics of change or utilize historical trends. In this thesis, we investigate two streams of research: (1) the magnitu...
متن کاملIndexing and Querying Data Streams
Online monitoring of data streams poses a challenge in many data-centric applications including network traffic management, trend analysis, web-click streams, intrusion detection, and sensor networks. Indexing techniques used in these applications have to be time and space efficient while providing a high quality of answers to user queries: (I) queries that monitor aggregates, such as finding s...
متن کاملMining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows
Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...
متن کاملInfluence of Stream channel morphology and in-stream habitats on fish community in Golestan province Streams
Four streams with different sizes were selected for studying the effects of environmental factors on fish assemblages using indirect (Detrended Correspondence Analysis, DCA) and direct (Redundancy Analysis, RDA) gradient analysis in Golestan province. DCA of presence-absence and relative abundance data showed well gradient and linear model of species variability. In the within-site RDA, environ...
متن کاملAn Adaptive Outlier Detection Technique for Data Streams
This work presents an adaptive outlier detection technique for data streams, called Automatic Outlier Detection for Data Streams (A-ODDS), which identifies outliers with respect to all the received data points (global context) as well as temporally close data points (local context) where local context are selected based on time and change of data distribution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.03105 شماره
صفحات -
تاریخ انتشار 2017